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Abstract

Performance metrics for machine intelligence (e.g., the
Turing test) have traditionally consisted of pass/fail tests.
Because the tests devised by psychologists have been aimed
at revealing unobservable processes of human cognition, they
are similarly capable of revealing how a computer
accomplishes a task, not simply its success or failure. Here
we propose the adaptation of a set of tests of abilities
previously measured in humans to be used as a benchmark
for simulation of human cognition. Our premise is that if a
machine cannot pass these tests, it is unlikely to be able to
engage in the more complex cognition routinely exhibited by
animals and humans. If it cannot pass these sorts of tests, it
will lack fundamental capabilities underlying such
performance.

1. Introduction

What constitutes success for designers using computational
autonomous development to create intelligent systems? The
observation of change over time with experience in an
environment is neither learning nor development unless that
change results in closer approximation to some performance
goal. Further, neither development nor learning necessarily
indicates that a machine has behaved intelligently. While it
may be interesting to observe how systems respond to
different environmental challenges and how parameters affect
a system’s behavior, eventually some attempt to guide
learning must be made if these systems are to shed much light
on human cognitive processes or prove useful in applications.

This was the challenge we faced in developing a set of
performance goals for the Joshua Blue Project. Joshua Blue
applies ideas from complexity theory and evolutionary
computational design to the simulation of a human mind on a
computer. The goal is to enhance artificial intelligence by
enabling the emergence of such capacities as common sense
reasoning, natural language understanding, and emotional
intelligence, acquired in the same manner as humans acquire
them, through situated learning in a rich environment.
Because our goal is to simulate human cognition, our
performance goals arise from observing how humans behave
in similar circumstances. Thus our project has been guided by
findings in developmental and cognitive psychology.

If a system is conceived as a “black box,” engineers work
from inside the box to implement the capabilities that will
achieve a desired outcome within a given set of constraints.
In contrast, psychologists work from outside the box, reverse-
engineering what already exists in the human mind to develop
plausible explanations for observed behavior. These different
interests converge in the need to specify performance goals
for autonomous learning systems because, as in psychology,
such testing must be performed from outside the box. Thus,
the paradigms used by psychologists to test hypotheses about
how the human mind functions provide a ready metric for
assessing how closely computer behavior approximates
human performance in well-defined contexts. In these tests,
the observed behavior of an autonomous system becomes
proof of what must be occurring inside a computer black box
designed by an engineer. This is important for those systems
that cannot be inspected directly — where the changes taking
place are hidden from the system’s designers or difficult to
interpret, as is typically the case with architectures based on
artificial neural networks.

For many purposes, it may not matter that a computer
accomplishes a task in a manner similar to humans. In our
case, because the goal of the Joshua Blue Project was to
simulate human understanding, thinking in the same manner
as humans has been an important design goal. Our reasoning
has been that every human capacity exists within the
interdependent context of the human mind for a specific
reason. Thus, approximating human functioning as closely as
possible in all respects seems necessary to success at
modeling a mind with rich, robust human-like cognitive
abilities. This goal is not as restrictive as it seems, given the
variation that exists among humans. Experience may teach us
which abilities are essential, which are not, and how much
deviation is possible without sacrificing the cognitive
qualities of the resulting system.

When a comparison between machine and human
functioning is proposed, it seems natural to ask “which
human shall we compare our machine with?”” This question
arises because humans do not all perform alike. Psychologists
have addressed this by describing behavior in terms of
distributions. The “normal” or bell curve for intelligence is
one such description of the range of human performance on a
specific measurement instrument (such as an IQ test). Such
curves permit one to place a particular score or measured



behavior within the context of behavior for a large number of
others. Thus it provides not simply pass/fail information but a
basis for comparison with the range of human variation.
Norms exist for most published tests. When machines
become more autonomous in their learning and have greater
flexibility in what they can do, when their learning
experiences are richer and more varied, governed by the
machine’s own choices, the behavior of intelligent systems
will also be less predictable and more variable. Statistical
techniques for describing variance and comparing behavior,
like those used by psychologists, will become more important
in assessing machine performance. Such techniques will be
needed to determine whether different observed behavior
reflects learning or simply change.

One longstanding test of human-like computer intelligence
has been the Turing Test [1], now conducted each year as the
Loebner Competition [2]. A drawback of that test is that
human functioning can be mimicked by systems that have
little if any human-like cognitive capabilities. The
performance goal can be met by simulating human behavior
convincingly (to the satisfaction of human judges) for a
relatively brief period of time in a restricted domain of
discourse. Surface behavior is partially simulated but the
underlying cognition producing that behavior is not. We
believe that meaningful performance tests must incorporate
the idea that it matters how behavior is accomplished, not
simply that it occurs [3].

When a developmental process is considered important to
acquiring human-like understanding, as we believe it to be,
then a dimension of change in stages with milestones
approximating human development is introduced. The time
frame for a computer need not be the same as for a human
child because its training experiences may differ, but the
order of acquisition of abilities, the interrelationship of
change in one domain with change in another, and so on,
should be considered. Taking a modular approach, as Fodor
suggests, temporarily simplifies evaluation of developmental
sequence and inter-relationships among processes, but at
some point separate processes become unified, domain-
specific knowledge converges, sensory data is integrated, and
more general or encompassing cognition emerges.

Ultimately, as a measure of success, we envision Joshua
Blue acquiring the capacity to pass not an adult Turing Test,
but a “Toddler Turing Test.” Success would mean that our
system would answer unrestricted questions posed by adults
in the same manner as a three year old toddler would, with all
of the common sense, naive physics, burgeoning language
use, and social understanding of a preschool child. The true
test would be whether Joshua Blue is distinguishable from
human three year olds, not whether Joshua Blue fools an
adult into believing it is not a computer, through faked typing
errors, colloquialisms, illogic or scripted emotional responses.

2.0verview of the Test Suite

The proposed test suite is intended to assess whether
certain essential, prerequisite cognitive abilities exist in a
system. This required identification of foundational abilities
without which a system cannot be considered a simulation of
human cognition. The approach to testing for these abilities is
twofold. First, changes in internal system values and other
parameters indicating changes in mental state can be
monitored and measured, and related to observed behavior.
Second, well-understood paradigms from psychology can be
adapted for use as performance benchmarks. In many cases,
such paradigms have demonstrated existence of unobservable
cognitive processes through observable and quantifiable
behavior. By comparing system results to results obtained
with animals and humans, designers can make stronger
claims about the capabilities of that system.

The test suite is divided into three parts, as shown in Table
1. The goal for systems simulating the general properties of
human cognition must be to pass all of the tests using a
single, generalized system. Ultimately, passing an
unrestricted toddler Turing test would require success in all
three parts of this initial test suite, plus a great deal more.

3. Tests of Associative Learning

We believe that a system capable of learning from its
environment must be endowed with motivation that gives it
the impetus to explore its world, recognize reward and
punishment, form goals and seek to satisfy them. While
certain drive states may be innate to the system, it should also
form acquired goals and use past experience to determine a
course of action. This test suite is designed to assess a
system’s ability to direct its own behavior by recognizing
environmental cues that signal reward or punishment. The
tests are based upon animal testing in the field of behavior
modification and learning. An excellent overview of this
work is presented by Klein [4].

3.1 Tests Showing Formation of Associations

In classical conditioning, associations are formed between
environmental cues (called conditioned stimuli) and elicitors
of affective or motivational states (called unconditioned
stimuli). Training occurs by presenting these two kinds of
stimuli together until one becomes a predictor of the other
and is responded to as if it were the other stimulus. Passing
this test requires the ability to recognize salient features of the
environment and associate them with the internal responses
evoked by a co-occurring unconditioned stimulus.



Table 1. Overview of Performance Metrics for Evaluating a Simulation of Mind

Associative Classical Forms associations between a predictive environmental cue and an
Learning Conditioning accompanying stimulus
. Forms mental representation of two cues as a single predictor,
Presence of a Mind demonstrates memory for previously encountered predictive cues
Instrumental Demonstrates cause-effect learning and responds to changes in
itioni amount or rate of reward or punishment
onditioning p
Purposeful Acquires goals and expectations, shows “learned helplessness” with a
Behavior lack of ability to achieve goals, shows escape/avoidance behaviors
Social Social Encodin Categorizes self and others by salient features and behavior, forms
Cognition 1 Ing stereotypes, forms a self schema
Social Inference Forms expectations (heuristics) based on observed correlations and
covariation among properties and behaviors of others, exhibits biases
resulting from use of such heuristics
Causal Attribution | Attributes motives to others, exhibits biases resulting from such
attributions, generalizes its self schema to others
Representation of Forms a representation of self observable in self-preserving or
Self enhancing behavioral choices in contexts that threaten self-image
Empathy and Generalizes the sense of self to others, demonstrates changes in affect
Attachment depending upon affiliation with others, shows affect-guided helping
behavior
. L. Performs combinative operations on sets, acquires phoneme
Language Prelinguistic combinations appropriate to a specific language, progresses through
A isiti Structural cooing to babbling and prosody mimicking speech, acquires
CQUISION Competences pragmatics of communication, understands communicative intentions
of others
Intentional . :
C . e Acquires and uses words to accomplish goals both through
ommunication associative learning and imitation of observed others
Sorts words by grammatical types (e.g., noun, verb), learns
Word Acquisition grammatical rules in same sequence as children, overgeneralizes

grammatical rules

Cross-Language
Comparisons

Demonstrates language-specific competence in a language other than
the first language taught, repeating the three tests above.




Given the capacity to form associations through experience
in an environment, classical conditioning can be tested in a
virtual environment using an embodied agent endowed with
minimal sensors and effectors, motives, affect, and
proprioception of both actions and affective states. In order to
pass the classical conditioning tests, the system must form a
classically conditioned association between an unconditioned
stimulus (e.g., satisfaction of “hunger”) and a conditioned
stimulus (cues signaling availability of “food”). This
association should result in observed changes in behavior. If a
pleasant stimulus is replaced by an aversive (unpleasant)
stimulus, then fear-based conditioning should result in
avoidance and escape behaviors.

A rich literature described in most learning theory
textbooks [4, 5] specifies quantitative relationships between
factors affecting learning and observed behavior. These
experiments can be used as a highly specific model against
which the behavior of a system can be compared.

3.2 Tests Demonstrating Mental Representation

A series of studies in the learning literature were used to
demonstrate that certain classical conditioning effects are the
result of expectations, which cannot exist unless experience is
being represented mentally. Several phenomena can be used
to show the existence of mental representations in a system.
This use of behavioral paradigms to demonstrate existence of
mental representations illustrates that the goal of a study that
measures behavior can be far more than simply to
demonstrate competence in performing that behavior. It can
also demonstrate indirectly what must exist in the less
observable parts of the system. The reasoning is that the
observed behavior, although often uninteresting in its own
right, could not be performed if certain important processing
were not occurring. Two examples are presented here, but
there are many more in the learning literature.

Normally, when two cues to an event are present, the more
salient cue (the better predictor) will block conditioning of
the lesser cue. However, if the two cues are perceived as part
of a unified percept, instead of as two separate events, then
the opposite effect occurs and presence of the highly salient
cue potentiates the response to the less noticeable cue. This
potentiation cannot occur without formation of a mentally
unified percept incorporating both cues. Similarly, in
backward blocking, a new aversive event becomes associated
with a previous environmental cue not actually present during
the unpleasant experience. If no memory of the cue were
formed, it could not become associated with the aversive
stimulus that came later. This provides an indirect way of
confirming that a system is forming mental representations of
its world and associating percepts with each other

3.3 Cause-Effect Learning Tests

Operant and instrumental conditioning (cause-effect
learning) paradigms test whether associations are formed
between environmental stimuli and voluntary behavior,
governed by reward or punishment. Virtual or physical
environments similar to the mazes and runways presented in

classic psychology experiments can be created to test such
learning. These include runways along which an agent or
robot can move, T-mazes and radial-arm mazes permitting
choice of paths, two-compartment shuttle boxes to test escape
and avoidance learning, more complex mazes like those used
by Tolman [6] to demonstrate existence of cognitive maps,
virtual or physical “Skinner boxes” (single and two-choice
lever-pressing boxes). Equivalent behaviors can be devised,
such as moving to a specific region of the environment to
obtain reward.

To pass these tests, a system must show a reliable
relationship between reward, punishment, and subsequent
behavior. The system should increase its behavior in response
to a reinforcer, decrease it in response to a punishment or in
the absence of a reinforcer. It should also conform to effects
of changes in size, rates and timing of reinforcement, as
described in the literature on schedules of reinforcement [4,
5]. Further tests of complex contingencies can show that the
system has the capacity to monitor longer chains of behavior
and form more complex goals.

Learning theory includes descriptions of several more
sophisticated learning phenomena involving expectations,
multiple reinforcers and behavioral allocation (dividing
attention between two sources of reward). We expect that a
system should show similar behaviors, including Crespi’s
depression effect, punishment effects, a partial reinforcement
effect, adherence to Premack’s principle and Herrnstein’s
matching law, all classic learning phenomena described in
textbooks [4, 5]. Because stimulus control phenomena are
closely related to ability to discriminate, identify relevant
features, and form concepts and categories, they are not
discussed here, but are described in Section 5.

3.4 Tests of Purposeful Behavior

Simple cause-effect learning does not necessarily imply
that an organism has formed a mental representation of its
goal states. Tolman’s [6] paradigms can be adapted to
demonstrate existence of purpose, expectations, and mental
maps in a system. A system must be capable of representing
aspects of its environment for future use, even when those
representations are not directly related to a current operation
or goal state. Latent learning studies can be used to show that
mental representations are being formed without reward.

Learned helplessness and phobias are both examples of
phenomena demonstrating the existence of expectations.
Learned helplessness occurs when an organism is subjected
to punishment but can do nothing to escape it, and it results in
a change in expectations about effectiveness of future
activity. Phobias represent acquisition of a classically
conditioned association between some environmental cue and
an aversive event. Observation of phobias indicates formation
of expectations about negative events, plus beliefs about what
behaviors will prevent those events. Suitable paradigms for
testing each of these can be adapted.

4. Tests of Social Cognition



Tests of two or more agents interacting in a shared
environment permit application of a system’s basic cognitive
capacities to social interactions. In addition to the capacities
needed to function alone in such an environment, the system
must communicate, compete and form alliances with other
agents, understand the behavior and intentions of others, and
find ways to coexist with them while also attaining important
goals. Fiske and Taylor [7] provide a thorough overview of
paradigms for studying human social cognition.

4.1 Tests of Social Encoding Processes

Social encoding can be tested in a simplified, virtual
multiple-agent environment by creating two types of
embodied agents: (1) agents with similar bodies and
behavior; (2) agents with dissimilar bodies and behavior.
Scenarios can be manipulated so that these agents compete
with, punish (show aggression), or cooperate with and help
the system being tested. From this experience, the system
should form an appropriate mental representation of both like
and unlike agents and behave according to its previous
experience with those agents. Stereotypes should be formed
as mental representations of the characteristics of these
groups of agents. Stereotypes can be demonstrated by
observing an experienced system’s behavior toward an
ambiguous new agent that includes some but not all of the
salient characteristics of previously learned social categories.
Once social categories have been learned, increased
ambiguity in classification of new agents should result in
interruptions of behavior and affective distress in the system.

4.2 Tests of Social Inference

Social inferences are based on observed correlations and
covariation among properties and behaviors of other agents
and environmental events and features. Once learned, these
become heuristics used in human reasoning. Existence of
such heuristics is observed in specially devised contexts
where they produce inference “errors.” If a system has
acquired heuristics, then it should demonstrate the same
errors as humans, instead of strictly mathematical/statistical
decision processes. These should result in the biases
enumerated in most textbooks [7], including: (1) framing
effects, use of extreme cases, over-reliance on small samples
or biased samples; (2) salience of immediate experience; (3)
inability to combine joint probabilities; (4) inability to
identify diagnostic information; (5) inability to correct for
regression artifact; (6) irregular or improper weighting of
cues.

4.3 Tests of Causal Attribution

Humans recognize that living beings have agency — the
ability to control their own actions in goal-directed ways.
Thus they attribute motives to others and understand the
actions of others in terms of intentions. While people
understand that circumstances can dictate behavior, they
prefer to attribute the actions of others to inherent motives,
preserving a belief in free will. This is reflected in certain

attribution biases [7], including the fundamental attribution
error, the actor-observer effect, and self-serving biases.
Environments can be created for testing fundamental
attribution error, the false consensus effect (where we
consider our behavior to be more representative of the
behavior of others than it really is), and self-serving bias.

4.4 Tests of a Representation of the Self

People tend to form representations of the self (self
schemas) along dimensions that are important to them in their
lives. Complexity of the self-schema is also determined by
life experiences. Thus a system’s self-schema should depend
upon its experiences. In humans, tasks involving perception,
memory and inference are used to demonstrate the
characteristics of the self schema. These can be adapted to
show that a system has formed a schema whose
characteristics vary with experience [7]. For example, self-
schemas change to more closely resemble those of others
surrounding a person. Thus the existence of a self-schema can
be demonstrated through changes in behavior that occur when
the system is placed in a new environment, among different
social agents than were present when the self-schema was
formed. Maintenance or preservation of a self-schema
motivates much human behavior. A cybernetic theory of self-
attention and self-regulation has been proposed by Carver &
Scheier [8]. This theory of regulation, with predicted
consequences for failure, provides a detailed model for
testing a system’s self-schema in different contexts.

4.5 Tests of Empathy and Attachment

In humans, empathy and attachment are the two main
mechanisms for regulating social interactions. Both depend
upon the cognitive evaluations and interpretations made of
social situations. When a system is endowed with affective
responses, these should mediate social interactions in ways
consistent with what is observed in humans. Tests of
emotion-motivated helping behavior can be adapted to assess
empathy [7]. Berscheid [9] proposes a theory that predicts
how emotion changes in long-term relationships, readily
testable in the simple social contexts described earlier.

5.Tests of Language Acquisition

The criteria for assessing machine language acquisition are
that a computer’s language must be used with the flexibility
of a real language, but must not be so constrained that one
language can be learned but not another (e.g., English but not
Chinese). Two aspects of language acquisition are
intertwined: (1) understanding of the structural properties of
the representations comprising language; (2) understanding of
the content of concepts represented by language.
Understanding of concepts appears to precede language
acquisition, although a child’s preexisting concepts are in turn
modified by later language learning. The complexities of the
structure of language are so great that many theorists
hypothesize innate mechanisms for acquiring structural



understanding, and even for
understanding.

An important prerequisite to language learning is the
ability to perform combinative operations on sets. Langer
[10] provides convincing evidence that this ability is needed
in order to form the class inclusion hierarchies essential to
categorization. He also argues that these operations (recursive
mapping of  cognitions, correspondence  mapping,
substitutions and equivalence relations) are the foundation of
abstraction and form the basis for linguistic rewrite rules.

Some theorists, such as Pinker, hypothesize a
straightforward mapping of words to “mentalese” nonverbal
representations, guided by innate mechanisms. Other theorists
assert that general associationist learning can account for
language acquisition, especially if social imitative learning
directs a child’s attention to what is relevant during learning
[11, 12]. Thus, a system must acquire language socially and
must have the mechanisms for imitative social learning in
place before acquiring language.

acquiring  conceptual

5.1 Tests of Prelinguistic Structural Competences

The first year of life is spent acquiring prelinguistic
competences supportive of ultimate language development.
These include a progression from cooing and laughing to
vocal play, babbling, and utterances that mimic the prosody
of speech, acquisition of the nonverbal pragmatics of
communicative interactions, such as smiling, gaze orienting,
turn-taking, pointing and showing, and mimicking behaviors.
The child also acquires an understanding of the
communicative intentions of adults [12]. A first task is to
learn to segment a flow of speech sounds into meaningful
combinations of phonemes (morphemes). The system’s
developing language should show increasing inclusion of
language-specific permissible combinations of phonemes. A
set of tests requiring the system to classify items into sets and
to perform the combinative operations on those sets described
by Langer [10] can assess whether the conceptual cognitive
abilities prerequisite to language learning exist.

5.2 Tests of Intentional Communication

Intentional communication requires use of language
instrumentally to accomplish goals and an understanding of
the ways in which others do so. The social paradigms
described earlier can be adapted to create situations in which
a system must learn to use words to accomplish specific
goals. Placed into a new environment, the system must be
able to learn to use words through observation and imitation
of the behavior of other social agents inhabiting the same
environment.

5.3 Tests of Word Acquisition

An understanding of grammar is necessary for word
acquisition because grammar constrains the possible
meanings of new words. While this grammatical knowledge
may be innate, some theorists argue that the statistical
frequencies in language call attention to the structural

properties of language sufficiently to permit grammatical
knowledge to emerge [11]. Either way, tests of word
acquisition begin with tests of grammatical knowledge. A
system must be able to tell the difference between nouns,
verbs, and adjectives, in a simple sorting task. Further, the
system must use that knowledge to classify objects. This can
be tested by adapting paradigms used with young children,
such as those demonstrating shape bias with nouns [11]. Tests
of more sophisticated grammatical knowledge demonstrate
rule acquisition by observing occurrence of errors resulting
from the overgeneralization of rules. These errors should
gradually disappear with greater experience.

5.4 Cross-Language Comparisons

Once a system has demonstrated competence in one
language, it must pass the same set of tests to demonstrate
competence in a different language.

6. Conclusion

There are many other aspects of cognitive functioning that
might be assessed. We propose this battery as a place to start.
If a system cannot pass these tests, it is unlikely to be able to
engage in the more complex cognition routinely exhibited by
animals and humans. Because all of these tests focus upon
abilities quantitatively measured in humans, they provide a
ready-made benchmark for simulation of human cognition.
The greater challenge is to create learning environments
sufficient to enable machines to acquire these abilities if they
are truly capable of doing so.

Notes

This paper was originally presented at the Second
International Conference on Development and Learning,
ICDL 2002, MIT, Cambridge, MA. Portions have been
revised in response to comments by conference attendees.
Nancy Alvarado may be reached at the University of
California, San Diego, Center for Brain and Cognition
(alvarado@psy.ucsd.edu).
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