

Simón Roses Femerling

www.vulnex.com

07/03/12

Smartphone Apps Are Not That Smart:
Insecure Development Practices

VULNEX Research Paper

Version 2.0

http://www.vulnex.com/

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

1

ABSTRACT

Mobile Apps are a growing business with thousands of applications to choose from across the

dominant mobile platforms and new Apps released every week. Users install in their

smartphones all kind of free Apps and many users are willing to pay for commercial ones

usually due to low prices. Apps have become the new Web.

The App fever has provoked that thousands of developers, experienced and inexperienced,

worldwide release new and updated Apps constantly to attract users so they become popular

and in most cases make a profit. Unfortunately this development madness tends to sacrifice

security and privacy.

This VULNEX research paper unveils an ugly truth: that too many Apps are highly insecure. The

results are based on the security analysis performed on dozens of Apps on different

smartphones by identifying flaws that can be avoided with safe development practices.

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

2

Table of Contents
Introduction .. 3

OWASP Mobile Security Project .. 4

Vulnerabilities on Smartphone Apps .. 5

Clear Text Secrets .. 5

Insecure Channels ... 6

Debug Code Enabled ... 7

Dynamic SQL .. 7

Cross-Site Scripting (XSS) ... 8

Phone Back Home ... 8

PII Compromise ... 0

Mixing Social Features... 9

Data Validation .. 0

Weak Crypto Algorithms ... 0

Conclusion ... 11

References ... 13

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

3

Introduction
For several months VULNEX has been analyzing mostly Android and a few Windows Phone 7

(WP7) apps (do not worry iOS - you’re next!) and it’s amazing how developers have gone back

to the 90´s when it comes to development practices.

Yes, developing apps for smartphones is easy, fun and in some cases can provide a fast ROI. All

this has started an avalanche of apps for the major platforms, but that doesn’t mean we

should ignore the knowledge we acquired from past experiences with standalone clients and

web apps, and start once again

developing insecure apps. What about

OWASP Top Ten [1] or even better

OWASP Mobile Top 10 Risks [2] for that

matter?

Through the course of the research, we

were able to identify well-known bugs

on popular apps (games, banking,

finance, security, communications and

social apps) that should not be there.

We are sure there are many more bugs

that we aren’t covering here, but Fig. 1

provides some of the bugs we have seen

so far on Android Apps. Some of these

bugs also affect other mobile platforms

Figure 1 provides a framework of

common bugs that this research and

other researchers have identified on

mobile apps. It is quite scary that some

of these bugs are still being found on

brand new apps with plenty of literature

on how to identify and protect against

these issues. There is no excuse for this

lack of secure development practices

among mobile developers. We agree it

is not only developers’ (independent

software vendors’) fault but also the

major mobile houses’, but we will talk

more about that later.

Now let’s move on by analyzing in

greater detail some of these bugs with

Fig. 1 - VULNEX Android Apps Vulnerability Map

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

4

the hope they will stop being introduced into mobile apps.

Note: Version 1 of this paper was released as an article in Insecure Magazine. Current paper is

a revised and extended version of the research performed by VULNEX into insecure Apps.

OWASP Mobile Security Project
Mobile Apps security is becoming so important that even OWASP have created a Mobile

Security Group to create resources for developing safe Apps. Besides the guides and tools they

are working on they have come up with the Top 10 Mobile Risks based on research by several

authors.

Both OWASP Mobile Top 10 Risks and VULNEX Apps Vulnerability Map share almost the same

kind of flaws, so each flaw we describe in this paper will also match into the OWASP Mobile

Top 10 Risks. You can read the OWASP Mobile Top 10 Risks in Fig. 2.

Fig. 2 - OWASP Mobile Top 10 Risks

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

5

Vulnerabilities on Smartphone Apps

Clear text secrets

This bug is an old classic that occurs when the developer does not care to protect some

sensitive information by using cryptography or other security means because he considers the

underlying platform to be safe from attacks.

An example of this type of bug is CVE-2011-1840 [3], where the app does not encrypt the

master password and is stored in an.xml file in clear text.

Both Android and WP7 provide a number of convenient and easy storage mechanisms that the

apps can use to store persistent information. However, security must be managed by the

developer himself (see Table 1 – Data Storage Providers).

Data Storage Providers

Android

Data Storage Purpose

Shared Preferences Store private primitive data in key-value pairs

Internal Storage Store private data on the device memory

External Storage Store public data on the shared external

storage

SQLite Databases Store structured data in a private database

Network Connection Store data on the web with your own

network server

Windows Phone 7

Data Storage Purpose

Isolated Storage Isolated storage enables managed

applications to create and maintain local

storage

Network Connection Store data on the web

Table 1 – Data Storage Providers

OWASP Mobile Risk Classification: M10 – Sensitive Information Disclosure

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

6

Usually this bug on Android can be found by examining the application directory as shown in

Code Box 1.

Insecure Channels

Many mobile apps communicate with systems on the Internet using web services to exchange

information, updates and such. The issue arises when the information in transit is not secure

because encryption is not used to protect the channel. An attacker can spy on the

communication between the smartphone and the server and sniff data, especially if you keep

in mind that many users use smartphones over Wi-Fi.

An example of this practice is when an app creates a URL query using a HTTP GET method with

no encryption and includes sensitive information (see Code Box 2). Besides the obvious issues,

the developers forgot that GET requests are often stored in logs (proxy, web servers, etc.).

pwd

/data/data/app_folder

ls

shared_prefs

lib

databases

cd shared_prefs

ls

app.prefs.xml <- Check Here!

cd ..

cd databases

ls

app.db<- Check Here!

Code Box 1

… More code …

StringBuilder localStringBuilder1 = new

StringBuilder("wsLogin.jsp?dni=").append(paramString1).append("&pwd=").append(paramString2).append("&bbrand="); <- Interesting

String str1 = BrandManager.getInstance().getBrand().toUpperCase();

StringBuilder localStringBuilder2 =

localStringBuilder1.append(str1).append("&lmode=").append(paramString3).append("&exInf=").append(1).append("&brand=").append("AndroidNative")

.append("&model=");

 String str2 = Constants.DEVICE_MODEL;

StringBuilder localStringBuilder3 = localStringBuilder2.append(str2).append("&SO=");

 String str3 = Constants.DEVICE_OS;

… More code …

Code Box 2

OWASP Mobile Risk Classification: M3 – Insufficient Transport Layer Protection

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

7

Debug Code Enabled

While developing an app it is common practice to add debug routines to the code. The issue

arises when the developer forgets to remove these debug routines and the app ships with

debugging enabled.

Android apps can be debugged using Dalvik Debug Monitor Server (DDMS) but it also provides

some classes such as util.Log and Debugthat can be used inside an app. On Windows Phone 7

we can use Visual Studio 2010 for debugging.

Code Box 3 shows an Android app where the developer encapsulated the debug classes into a

custom class but forgot to disable the debug flag when the app was shipped.

Dynamic SQL

Everyone has heard about SQL Injection but one can still find plenty of applications (mobile

and otherwise) that suffer from this type of bug due to the use of Dynamic SQL and lack of

data validation.

We would imagine that when it comes to mobile apps developers are not that concerned

about SQL Injection since the databases are very simplistic– Android uses SQLite to store data

and Windows Phone 7 none natively; for databases support on WP7 we need to use externally

services like SQL Azure. But since smartphones and tablets are entering into corporate

networks and companies are deploying Line of Business (LOB) apps, developers should take

action to prevent this type of bugs. We could argue they are hard to exploit but worst things

have happened in the past.

Code Box 4 contains an example of an app that stores information into the database (SQLite)

using Dynamic SQL and

no data validation,

allowing an attacker

controlling the

paramString value to

perform SQL injection

attacks.

public final class Debuglog

{

 private static boolean mLoggingEnabled = 1; <- Debug Enabled

 public static int d(String paramString1, String paramString2) {

 int i = 0;

 if (mLoggingEnabled) {

String str = paramString2;

 i = Log.d(paramString1, str);

 }

 return i;

 }

…. More code….

Code Box 3

…. More code….

public void addBank(int paramInt, String paramString) {

SQLiteDatabase localSQLiteDatabase = this.mDb;

String str = "INSERT INTO banks(_id, name) VALUES('" + paramInt + "', '" + paramString + "');";

localSQLiteDatabase.execSQL(str);

}

…. More code….

public void deleteCaseValue(String paramString) {

SQLiteDatabase localSQLiteDatabase = this.mDb;

String str = "DELETE FROM case_values WHERE _id = " + paramString; <- Here

localSQLiteDatabase.execSQL(str);

}

…. More code….

Code Box 4

OWASP Mobile Risk Classification: M4 – Client Side Injection

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

8

Cross-Site Scripting (XSS)

XSS is another old classic when it comes to application security. XSS and SQL Injection bugs are

the most common type of bugs on web apps (see OWASP Top 10). There is plenty of literature

and solutions against XSS but it still pops up everywhere. SQL Injection and XSS are hard to

exploit but should not be underestimated in the mobile space.

As this is old news we will not spend too much time on the subject, just be careful when using

WebView class on Android and WebClient or HttpWebRequest classes on Windows Phone 7.

Phone Back Home

When loading many apps typically connect back to servers to check for updates or other types

of information. By itself this should not be a problem, however combined with other issues like

PII compromise, insecure channels, etc. it could present a big problem.

We have seen plenty of mobile apps that phone back home to update information and in some

cases share too much information. While analyzing an app, watch out for how and what

information is sent back to servers, since users usually have no control over it.

PII Compromise

Google and Apple have lately been accused of gathering information about their users’

location. But if we analyze mobile apps we see this pattern is quite common for both small and

big independent software vendors- they gather a lot of information about their users.

Honestly, we are not sure what is worse -that the big players gather information on my

location or that companies we have never heard of gather the same or even more information.

Code Box 5 is a good example of a mobile app that gathers

too much information (such as the device name, OS

version, model, etc.) from the device. Being that this is a

financial app, one could argue about the vendor’s need to

collect all that info. Sure, there are different OS versions

and screen sizes but we are still not convinced they need all

that information.

By using smartphones we are sacrificing our privacy big

time (see iPhone secretly tracking users [4]). Developers

should gather only the information they need and no more.

Also, apps need to make an effort on being more

transparent and let their users decide about what

information is sent back to servers.

…. More code…. !! so much info !!

Object[] arrayOfObject = new Object[16];

arrayOfObject[0] = "app_platform";

arrayOfObject[1] = paramString1;

arrayOfObject[2] = "user_id";

arrayOfObject[3] =

paramString2;arrayOfObject[4] = "device_id";

arrayOfObject[5] = paramString3;

arrayOfObject[6] = "device_name";

arrayOfObject[7] = paramString4;

arrayOfObject[8] = "app_version";

arrayOfObject[9] = paramString5;

arrayOfObject[10] = "sys_model";

arrayOfObject[11] = paramString6;

arrayOfObject[12] = "sys_version";

arrayOfObject[13] = paramString7;

arrayOfObject[14] = "carrier";

…. More code….

arrayOfObject[15] = paramString8;

Code Box 5

OWASP Mobile Risk Classification: M4 – Client Side Injection

OWASP Mobile Risk Classification: M8 – Side Channel Data Leakage

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

9

Mixing Social Features

Today it’s all about being social; if you are not on Facebook and Twitter, you don’t exist to the

online world. Again, this is not an issue by itself but the risks arise when apps try to add social

capabilities by integrating services like Facebook, Twitter, Foursquare and similar with insecure

development practices.

During the research we discovered banking apps that integrate Facebook (not sure why you

need your friends while you pay your bills), but the issues were that the Facebook account was

not protected correctly by the application developer (clear text secrets) and anyway why

should the bank get access to your friends contact list (PII compromise)?

Being social is good but there is a limit and developers should think about that when

developing their apps. If an app needs to integrate social features it must be done securely,

following secure development practices.

Data Validation

It is a fact that many bugs are related to a lack of data validation and unfortunately mobile

apps are no exception. We can find plenty of these bugs as developers don’t check data for

safe content, length, type, and such.

In Code Box 6 we can see an example where an app doesn’t perform any data validation on the

input provided by the user. The developer assumes that all of the context is good and trusts

the user (they would never enter

malicious code, right?). By

examining the code we can also

observe that the data is saved to

the platform log file, which

presents an additional problem. An attacker could, for example, try to fill the logs with junk

and trigger a Denial of Service (DoS) since mobile devices have limited disk space, or insert

malicious code to logs and wait for some vulnerable tool to open the log. Also sensitive

information (PII) is logged.

This type of bug is still quite common on all sorts of applications. There are plenty of checklists

and security tools to perform data validation so there are no more excuses. See table 2 for

some of these tools but keep in mind these libraries are not focused on mobile development.

For better guides on data validation see OWASP Data Validation [5].

Technology Library

Java OWASP AntiSamy

https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project

.NET OWASP AntiSamy

https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project_.NET

Microsoft Web Protection Library (WPL)

https://connect.microsoft.com/Downloads/DownloadDetails.aspx?SiteID=734&DownloadID=23329

…. More code….

String str3 = TAG;

String str4 = "Ignored change to " + paramString + ". Back to watching";

int j = Log.i(str3, str4);<- No validation on ParamString and saved to log

…. More code….

Code Box 6

OWASP Mobile Risk Classification: M4 – Client Side Injection

Table 2 – Data Validation Libraries

https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_Project_.NET
https://connect.microsoft.com/Downloads/DownloadDetails.aspx?SiteID=734&DownloadID=23329

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

10

Weak Crypto Algorithms

A developer should never try to develop his or her own crypto algorithm, as this is just a recipe

for failure. Instead, developers should take advantage of proven libraries that use strong

algorithms like Advanced Encryption Standard (AES) and such.

Both platforms offer strong cryptographic

algorithms to choose from, but the issue

arises whenthe developer implements

themineffectively or chooses the incorrect

solution like using a hash algorithm with

no salt to encrypt sensitive information.

Code Box 7 is another example of the

issue discussed earlier. In this case the app

is using MD5 (a well-known insecure

algorithm) to protect some sensitive

information.

MS SDL Approved Cryptographic

Algorithms (ripped from Microsoft SDL [6])

are a good recommendation on how to select and securely use a cryptography algorithm for

your app needs. Cryptography is a sensitive issue, andMicrosoft has some excellent

resourceson how to use it safely [7].

Algorithm Type

Banned (algorithms

to be replaced in

existing code or used

only for decryption)

Acceptable

(algorithms

acceptable for

existing code, except

sensitive data)

Recommended

(algorithms for new

code)

Symmetric Block
DES, DESX, RC2,

SKIPJACK
3DES (2 or 3 key) AES (>=128 bit)

Symmetric Stream
SEAL, CYLINK_MEK,

RC4 (<128bit)
RC4 (>= 128bit)

None, block cipher is

preferred

Asymmetric

RSA (<2048 bit),

Diffie-Hellman (<2048

bit)

RSA (>=2048bit),

Diffie-Hellman

(>=2048bit)

RSA (>=2048bit), Diffie-

Hellman (>=2048bit), ECC

(>=256bit)

Hash (includes HMAC

usage)

SHA-0 (SHA), SHA-1,

MD2, MD4, MD5
SHA-2

SHA-2 (includes: SHA-256,

SHA-384, SHA-512)

Table 3 – MS SDL Approved Cryptographic Algorithms

…. More code….

public static byte[] getMD5(byte[] paramArrayOfByte) {

 Object localObject = (byte[])0;

 try {

MessageDigest localMessageDigest =

MessageDigest.getInstance("MD5"); <- weak crypto

localMessageDigest.update(paramArrayOfByte);

byte[] arrayOfByte = localMessageDigest.digest();

 localObject = arrayOfByte;

 return localObject;

 }

catch (NoSuchAlgorithmException localNoSuchAlgorithmException) {

 while (true)

localNoSuchAlgorithmException.printStackTrace();

 }

}

…. More code….

Code Box 7

OWASP Mobile Risk Classification: M9 – Broken Cryptography

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

11

Conclusion
At this point, it should be clear that the security state of mobile applications should be

improved and that mobile developers need to understand the risks and follow secure

development practices. Likewise, mobile platform creators need to come up with security tools

and better documentation/guides on security so that independent software vendors can use

them to develop secure apps.

Projects such as OWASP Mobile Security should be mandatory reading for anyone developing

mobile apps. This guide covers all major smartphone platforms.

Microsoft has a section on the mobile developer documentation devoted to developed secure

apps [8],and the same goes for Google [9] [10] and Apple [11]. They are not perfect but it is a

start.

Here are a few recommendations for addressing the security of mobile apps:

Figure 2 – Call to Arms, Mobile App Security

Hopefully this research can raise awareness about mobile app security and we can start fixing

things. Most security researchers focus on the platform itself but what is the point of having a

secure platform when you have thousands of insecure apps running on top of it?

It is crucial that mobile app security becomes important as many mobile devices (iPads,

Android tablets and possibly starting next year Windows 8 tablets) are being introduced into

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

12

corporate networks, as well as an array of smartphones from a variety of companies breaking

traditional security defenses.

It goes without saying that users need to raise concerns about the security and privacy of

smartphones and apps - they have to demand better security. The security industry needs to

start raising the awareness of the dangers of lousy mobile app security.

We will continue with the research, analyzing more apps and other platforms to create a

better framework of mobile app bugs and how to deal with them.

VULNEX would like to thanks Brian Honan of BH Consulting and the Veracode team for

reviewing and providing great feedback to the original paper (v1).

VULNEX Research Paper - Smartphone Apps Are Not That Smart: Insecure Development Practices

13

References

1. OWASP Top Ten

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

2. OWASP Mobile Top 10 Risks

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

3. SRF-SA-2011-01: Clear Text Secrets in PassmanLite Could Allow Access to Passwords

http://www.simonroses.com/security-advisories/

4. IPhones Secretly Track Their Users Locations

http://edition.cnn.com/2011/TECH/mobile/04/20/iphone.tracking/

5. OWASP Data Validation

https://www.owasp.org/index.php/Data_Validation

6. Cryptographic Agility (MS SDL)

http://msdn.microsoft.com/en-us/magazine/ee321570.aspx

7. Banned Crypto and the SDL

http://blogs.msdn.com/b/sdl/archive/2009/07/16/banned-crypto-and-the-sdl.aspx

8. Security For Windows Phone

http://msdn.microsoft.com/en-us/library/ff402533(VS.92).aspx

9. Android Security and Design

http://developer.android.com/guide/market/billing/billing_best_practices.html

10. Android Security and Permissions

http://developer.android.com/guide/topics/security/security.html

11. IPhone Developer Library: Security Coding How-To’s

http://developer.apple.com/library/ios/#codinghowtos/Security/_index.html

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
http://www.simonroses.com/security-advisories/
http://edition.cnn.com/2011/TECH/mobile/04/20/iphone.tracking/
https://www.owasp.org/index.php/Data_Validation
http://msdn.microsoft.com/en-us/magazine/ee321570.aspx
http://blogs.msdn.com/b/sdl/archive/2009/07/16/banned-crypto-and-the-sdl.aspx
http://msdn.microsoft.com/en-us/library/ff402533(VS.92).aspx
http://developer.android.com/guide/market/billing/billing_best_practices.html
http://developer.android.com/guide/topics/security/security.html
http://developer.apple.com/library/ios/#codinghowtos/Security/_index.html

